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1. Introduction. The object of this note is to make some observations on imagi- 
nary quadratic fields with a given class number. We give a different proof of a 
modified form of the theorem of Heilbronn and Linfoot [1] to the effect that there 
are at most 10 imaginary quadratic fields with class number 1. The nine known 
fields have discriminants -3, -4, -7, -8, -11, -19, -43, -67, -163. The 
existence or nonexistence of a 10th field remains an unsolved problem. We hasten 
to add that the arguments given below shed no new light on this famous problem. 

Let h(d) be the class number of the imaginary quadratic field Q( i -D) with 
D > 0 and square free and with discriminant -d = -D or -4D. 

Heilbronn [2] proved the famous conjecture of Gauss that h(d) -> oo as d -oo 

and C. L. Siegel [3] proved the stronger result that for every e> 0, there exists a 
constant d(E) such that for d > d(E), 

1/2 e 
h(d) > d' 

Both these results imply of course that the number of fields with a given class num- 
ber must be finite; in particular there exists do such that for d > do, h(d) > 1. Un- 
fortunately, the constant do cannot be effectively determined from either proof. 

The proof of the theorem of Heilbronn and Linfoot was effected by modifying 
Heilbronn's proof of Gauss's conjecture, keeping control of the error, and it might 
be expected that Siegel's proof can be similarly modified, as indeed it can. We there- 
fore prove the following: 

THEOREM A. There exists an effectively calculable constant po such that if pi ? P2 

> Po and 

h(p1) = h(p2) -1, 

then pi = P2. 
It should perhaps be noted that if h(d) = 1, then d is a prime. 
We shall defer for the time being an explicit evaluation of po. As we shall see in 

the course of the proof, we have a parameter at our disposal which may be ex- 
pected to aid in determining the most economical value of po. 

By modifying our proof somewhat, we can prove the slightly more general 
THEOREM B. For any integer ho > 1, there exists an effectively calculable constant 

po(ho) such that if 

d1 > d2 > po(ho) 

and 
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h(di) = h(d2) =ho, 

then 

di = d2. 

We restrict our attention to a proof of Theorem A. 

2. Proof of Theorem A. The proof is as noted above an adaptation of Siegel's 
argument. We shall state the results needed. 

Let K be an algebraic extension of the rationals of degree n with 'y 1 real and 
2'y2 complex conjugates where -y1 + 2-y2 = n. Put q = 'Yl + 'Y2, and let xi, x2, .., x., 

be n positive real variables subject to the restriction that xy,+l = xi (1 = -Yi + 
1,- , -Y1 + -Y2). 

Let 
n n 

N(x) = Hxi and S(x) = x 
i=1 i=1 

and let 

PK(S) = t s 

be the Dedekind zeta function for the field K, where 2[ runs over the ideals of K 
and N(2t) denotes the norm of the ideal WI. Hecke (see e.g. Landau [4]) derived the 
functional equation for PK(S) via the formula 

4(s) -ns/22-" sIdIs/21 (ri2)sr72 ((s)?K(S) 

(1) XKS I) + 'f f(N(X)s/2 +N(X)(1)/2 

X exp [_TrN(W)2/n Id -1/ns (x)] dx1 * dxq 
X 1.. Xq 

where 

(2) X K = (27r)-Y2 IdI 1/2 a 

d is the discriminant of K and a is the residue of vK(s) at its simple pole at s = 1. 
The integration is over the domain N(x) > 1. 

The first inference to be drawn from (1) is that for 0 < s < 1, 

(3) OK(8) > s-(s + dI s/2 exp [-2rn]2-. 

The proof is straightforward; the integrand being positive, we neglect all but the 
term 2 = (1) in the sum and integrate only over IdjIIn ? xi < 2jdI"In (i = 1, 2, 
* , q). Though the constant exp [-2irn]2-n may be improved considerably, the 

order of magnitude as a function of idj may not. It should perhaps be remarked 
that it would be interesting to find a proof of (3) which does not use (1). 

Now let d be the discriminant of a quadratic field and let 
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Xdf(n) = (d/n) 
be the Kronecker symbol; let 

coXd(fl) (4) L(s, Xd) / ' s 

be the L-function belonging to the primitive character Xd. 

If K is a quadratic field with discriminant -d (d > 0) with class number h(d), 
then 

(5) K (S) = (s)L (s, Xd) 

and moreover in this case 

(6) L(1, Xd) = (r/VNd) h (d) . 

These are well-known results (see e.g. Ayoub [6, Chapter V]). Assume now that K1 
and K2 are imaginary quadratic fields with class number 1 and suppose that their 
discriminants are -pi and -P2, where, as remarked above, pi and P2 are primes. 
Suppose that K3 is the quadratic field generated by (plp2)112 and suppose also that 
K is the biquadratic field generated by (-p1)112 and (-p2)1t2, that is by K1 and 
K2. Then since pi = 3 (mod 4) for pi > 8, it is a simple calculation to show that 
the discriminant of K3 is PlP2, the discriminant of K is (plp2)2 and moreover for K 
we have -Y2 = 2 and of course -yi = 0. An examination of the decomposition of 
rational primes p in the field K yields the result (see Siegel [3]) 

(7) PK(S) = P(s)L(s, x-,.)L(s, x-12)L(s, XP1P2) - 

Since K1 is assumed to have class number 1, it follows from (2), (5) and (6) that 
XK, = 4. If then SOK. (S) _ 0, then from (3) we should get 

(8) 1 > s(1 - S)pls/2 exp [-4,x]2-1 

Consequently if so & (3/4, 1), we can find po'(so) for which (8) is false. Therefore, for 
pi _ po'(so) we have s(K,(so) > 0. In other words, 

L(so, x_PiMrso) > ?. 

But since c(s) < 0 for 0 < s < 1, it follows that 

L(so, X-p1) < 0 . 

Since L(1, x-p,) > 0 from (5), (and L(s, x) is continuous) we infer that there exists 
si, with so < si < 1, such that 

(9) L(si, x-p.) = 0 

We now apply (3) together with (7), using (9), to get 

(10) 0 > X K + C1(p1p2) 

where by (7), we have 

(11) XK = (2ir)-22plp2L(1, x-p1)L(1, x-P2)L(1, XP1P2). 
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On the other hand, if x is a real character mod k, then we have the inequality 

(12) L(1, x) < 3 log k= c2 log k 

which is readily derived by partial summation. 
We use (6) for L(1, x-p1) and L(1, x-p2) and (12) for L(1, Xp1p ) in (10) and (11) 

and infer that 

0 > c3 (p1p2) log PlP2 + C4(PlP2) 
Si(Si-1) 

or 

(13) logP1P2 > Css1(1 -s1)(p1p2) s1/ 

It is elementary to show that there exists a constant c6 such that 

(14) 1 -_s > c6/(p1) 1/2 log pl 

but we shall use the much deeper result of Rosser [5], viz. 

(15) 1 - si > ir/6 (p )1/2 

even though (14) could be used for numerical purposes. Putting (15) in (13), we 
get for pi > po'(so) 

(16) logP1P2 > c7(plp2) s l1/2 P 1/2 

The entire argument, however, is symmetric in pi and P2, and we therefore infer 
that for P2 > po"(so) 

(17) log PlP2 > C8(PlP2) s1/2 p21/2 

From (16) and (17) it now follows that if Pl, P2 > po"'.(so) = max (po', po"), then 

(18) log2 PlP2 > C9(plp2) 

Since we assumed that so > 3/4, (18) leads to a contradiction if pi, P2 > pO(iv)(so). 

Thus, finally, if po(so) = max (po"', po(iv)), we get a contradiction-hence p1 = P2. 

It should be noted finally that all of the constants cl, c2, , c9 as well as the 
Po's are effectively calculable. 

Moreover it should be observed that in numerical calculations, we have in addi- 
tion the parameter so at our disposal. 
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